
DssEC: A Deep State Sequence Based Equivalence Checker
Jian Hu

The Sixty-third Research Institute,
National University of Defense

Technology, Nanjing 210000, China
Hujian198681@126.com

Yun Kang
The Sixty-third Research Institute,
National University of Defense

Technology, Nanjing 210000, China
yk@126.com

Yongyang Hu
The Sixty-third Research Institute,
National University of Defense

Technology, Nanjing 210000, China
yyh@126.com

Haitao Yang
The Sixty-third Research Institute,
National University of Defense

Technology, Nanjing 210000, China
hty@126.com

Le Tong
The Sixty-third Research Institute,
National University of Defense

Technology, Nanjing 210000, China
lt@126.com

Jie Cheng
The Sixty-third Research Institute,
National University of Defense

Technology, Nanjing 210000, China
jc@126.com

Junquan Deng
The Sixty-third Research Institute,
National University of Defense

Technology, Nanjing 210000, China
djq@126.com

ABSTRACT
Human-guided transformations or a compiler have carried out on
some source to source transformations for software or hardware
optimizations. Since the compiling process is complex and error
prone, theremay be some errors in the implementation. Equivalence
checking proves the target program be a correct translation of the
compiled source program. In this paper, we propose an equivalence
checking tool for verification of the source and target programs;
Finite State Machines with Datapath (FSMD) is used to model the
original and the transformed programs. The tool is based on a
deep state sequence (DSS) strategy proposed in our previews work.
The false computation problem of value propagation (VP) based
method can be solved by our tool. The experiment results show the
effectiveness and efficiency of our tool.

CCS CONCEPTS
•Hardware; •Hardware validation; • Functional verification;
• Equivalence checking;

KEYWORDS
Equivalence checking, System level modeling, Deep state sequence,
Register-transfer level
ACM Reference Format:
Jian Hu, Yun Kang, Yongyang Hu, Haitao Yang, Le Tong, Jie Cheng, and Jun-
quan Deng. 2021. DssEC: A Deep State Sequence Based Equivalence Checker.
In The 5th International Conference on Computer Science and Application

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSAE 2021, October 19–21, 2021, Sanya, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8985-3/21/10. . . $15.00
https://doi.org/10.1145/3487075.3487106

Engineering (CSAE 2021), October 19–21, 2021, Sanya, China. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3487075.3487106

1 INTRODUCTION
High-level synthesis (HLS) [1] transforms a source code to a target
code for optimizations. Thus, programmers can focus only on the
functionality and the correctness of the program being developed.
Schedulingmaps each operation to a specific clock cycle under some
constraints, such as area and/or delay and data dependencies.Code
motion (CM) technique in scheduling phase of HLS schedules the
operations between different basic blocks, but it must preserve
the existing control dependence and all data dependence. CM is
widely used in HLS to improve the quality of designs with complex
structures and loops. After CM, the data-flow of a behavior may
be changed considerably. Hence, it is indispensable to check the
equivalence between the source behavior and the scheduled one
generated by HLS.

Equivalence checking is a technique that verifies the transformed
program generated by the HLS is a correct translation of the source
program. Although the equivalence checking technique can not
prove the HLS tool bug-free, it guarantees the translation process is
correct after HLS. Our work in this paper proposes an equivalence
checking tool for code motion transformations.

There are several related works in recent years addressing the
equivalence checking problem in high-level synthesis. Some path-
based equivalence checking methods are presented in [2-7] for
verification of FSMD models. Since a path cannot be extended
beyond a loop, all these methods fail to deal with the case of code
motion across loops and loop invariant code motion in nested
loops. A state-of-the-art DSS based equivalence checking method
proposed in [8] can handle the code motions across loop bodies.
This is accomplished by comparing the whole path instead of path
segments between cut-points.

https://doi.org/10.1145/3487075.3487106
https://doi.org/10.1145/3487075.3487106

CSAE 2021, October 19–21, 2021, Sanya, China Jian Hu et al.

Figure 1: Framework of Equivalence Checking.

In the earlier work [8], the author Hu shows the detail of their
equivalence checkingmethod for validating the correctness of trans-
formations between the target program and the source program.
However, that paper does not report the equivalence checking tool.
This paper describes the verification tool named DssEC presented
in [8], which is based on pycparser [9], a complete parser of the C
language, written in pure Python.

The rest of this paper is organized as follows. In section 2, the
tool architecture is presented. Section 3 shows the functionalities
of modules in the tool. In section 4, an example illustrating our
method is presented. Some experimental results is shown in section
5. Section 6 concludes our work.

2 TOOL ARCHITECTURE
Figure 1 shows the framework of the equivalence checker. The blue
boxes denote those modules which are implemented in C, the white
boxes are implemented in python and the other colors boxes are
external to our tool. We will briefly describe each of the modules
shown in the figure below.

The inputs to the equivalence checker are the original program in
C and an optimized program also in C produced by a compiler. In the
equivalence checker, a C-to-FSMD translator implemented based on
pycparser is first used to obtain the corresponding FSMDsMs and
Mi of the specification and the implementation. The DSS setDs and
Di of the respective FSMDsMs andMi are then obtained by a DSS
construction module implemented in C. The DSS analyzer module
tries to find corresponding equivalent DSS pairs (DSS ds in Ds and
DSS di in Di). The equivalence checker outputs success, if all the
DSS in Ds can find their equivalent DSS in Di . The equivalence
checker outputs fail, if any DSS in Ds fail to find their equivalent
DSS in Di . Symbolic simulation is used to obtain the formula to
validate the equivalence of the two comparedDSS. After the formula
generation, the codes of the two DSS are converted into static single

assignment (SSA) form [10]. The formula is fed to an SMT solver
Z3 [11] to obtain the results.

3 FUNCTIONALITIES OF MODULES
The tool has been implemented in python and C respectively. The
modules SSA Converter and C-to-FSMD Translator have been
carried out using python. TheDSS Analyzer andDSS Constructor
and Formula Generator have been implemented in C. The five
modules of the core system is depicted in Figure 1

3.1 C-to-FSMD Translator
FSMD is a widely used intermediate form for sequential pro-
grams, since it is not difficult to extract FSMDs from the pro-
grams [12]. There are three basic nodes for any sequential program:
(i)sequential statements in a basic block without any bifurcation of
control flow, i.e., assignment node, (ii) branch node, and (iii) loop
node. The module C-to-FSMD Translator can generate the FSMD
from any C program. It traverses through the abstract syntax tree
(AST) and generate FSMD states based on the type of AST node.

At the beginning of the program, our tool creates a start node.
When an assignment node in a basic block is encountered, no
new node is created and only the assignment operation is stored.
When a branch node is encountered, two FSMDs are constructed
corresponding to true branch BB1 and false branch BB2 first. The
branch node is obtained from these two FSMD. First, the start states
of two FSMD are merged into one start state and the end states of
two FSMD into one end state. Second, the condition c is placed as
the condition of BB1 and the condition ¬c is placed in the transition
of BB2. When a loop node is encountered, the FSMD M of the
loop body is constructed. The the loop node is obtained as follows.
First, the start and the end state ofM are merged into one state q0,
and placing the condition c in the transitions from q0. Second, a
transition from q0 with condition ¬c is added as the exit path from
the loop in the FSMD.

We formally define the node processing rules in an AST as fol-
lows:

Assignment node, e1=e2:
operation+=” e1=e2;”
For node, for(e1;e2;e3):
fsmd="-/"+operation+’,’+newstate1;
fsmd =’(’+e2+’)’+"/-,"+newstate2+",!("+e2+")/-,"+ newstate3;
fsmd ="-/"+operation+’,’+newstate1;

While node, while(e1):
fsmd="-/"+operation+’,’+newstate1;
fsmd=’(’+e1+’)’+"/-,"+newstate2+",!("+e1+")/-,"+ newstate3;
fsmd="-/"+operation+’,’+newstate1;

If+else node, if(e1) ; else e2:
fsmd="-/"+operation+’,’+newstate1;
fsmd=’(’+e1+’)’+"/-,"+newstate2+",!("+e1+")/-,"+ newstate3;
fsmd= "-/"+ operation+’,’+newstate4;
fsmd= "-/"+ operation+’,’+newstate4;

The variable newstate is a new generated state of the FSMD. The
variable operation is used to store assignments on the edge in

DssEC: A Deep State Sequence Based Equivalence Checker CSAE 2021, October 19–21, 2021, Sanya, China

the FSMD. The variable fsmd is used to store the resulting FSMD
structure.

3.2 DSS Constructor
DSS Constructor tries to produce all the DSS of both FSMDs in a
depth-first manner from the respective reset states of the FSMDM1
andM2 as shown in Algorithm 1.

Recursive method is used to generate the DSS. During the re-
cursion process, the algorithm stores the unrepeated paths. DSS
and its number are stored in variable Seq and variable num. The
current FSMD node and its number are stored in variable p and
variable j. The algorithm traverses the AST in a depth-first manner
and stores the unvisited nodes determined by the function InSeq().

3.3 DSS Analyzer
The DSS analyzer module tries to find corresponding equivalent
DSS pairs (ds in Ds and DSS di in Di). The equivalence checker
outputs success, if all the DSS in Ds can find their equivalent DSS
in Di . The equivalence checker outputs fail, if any DSS in Ds fail
to find their equivalent DSS in Di .

First, module DSS Analyzer will select a ds from the DSS set
if the Ds is not empty. Second, automatic test vector generation
technique (ATVG) [13] is used to generate test vector for the se-
lected ds . If no tests can satisfy the ds , our tool will take it as a false
computation and delete it from the DSS set. In the end, our tool
applies the generated test to the transformed program to obtain the
corresponding di .

3.4 SSA Converter
In an SMT solver, all the statements are represented as asserts.
However, the asserts do not capture the order of execution of the
statements . Hence, the code needs to be transformed into its equiv-
alent SSA form. Next, the asserts are generated by the formula
generator as the input for SMT solver. In the converting process,
our tool first creates a dictionary to store the variable and its sub-
script. The subscript of the variable increases onlywhen the variable
is assigned a value. If our tool meets an assignment statement and
the variable assigned a value is not in the dictionary, it is added to

Figure 2: (a) Original Program; (b) Program in SSA Form; (c)
Generated Dictionary.

the dictionary and assign 0 as its subscript. If the variable is already
in the dictionary, we add the subscript of it by one. Figure 2 shows
the program snippet, its equivalent SSA form and the dictionary in
the algorithm.

3.5 Formula Generator
The Formula Generator is used to obtain the formula to validate
the equivalence of the two compared DSS. First, the conjunction
expression of SSA of the compared DSS-pairs are generated using
symbolic simulation technique. Then an SMT solver is used to solve
the conjunction expression to prove the equivalence.

4 RUNNING EXAMPLE
Figure 3 is an example for illustration of our approach. Figure 3 (a)
and (b) represent FSMD models of C program before and after code
motion across loop. The state name is represented as Ai and the
state transition condition e1 and update function e2 are the form
e1/e2. Our tool first generates the AST of the example as bellow.

FileAST:
FuncDef:
Decl: main, [], [], []
FuncDecl:
TypeDecl: main, []
IdentifierType: [’int’]
Compound:
Decl: out, [], [], []
TypeDecl: out, []
IdentifierType: [’int’]
.
..
While:
BinaryOp: <=
ID: i
ID: n
Compound:
Assignment: =
ID: y
BinaryOp: +
ID: y
ID: i
Assignment: =
ID: i
BinaryOp: +
ID: i
Constant: int, 1
.
.
Return:
ID: out

CSAE 2021, October 19–21, 2021, Sanya, China Jian Hu et al.

Figure 3: (a) Original FSMD; (b) Transformed FSMD.

Next,C-to-FSMD Translator generates the FSMD of the program.
The output of our tool is in the bellow. The number in the first
column is the source state and the number after the comma is
the destination state. The operations in the same transition are
separated using semicolon. Since the symbol ‘/′ is used to represent
the division operation, ‘/′ is replaced by ‘|′ to separate the condition
and data transformation of execution. The negation of a condition
is represented using symbol ‘!′ (instead of ¬). The symbol ‘−′

represents no operation as the data transformation of an execution
and true as the condition of execution. It should note that the
number of transitions from a state to another in an FSMD has no
limitation, as long as the conditions of executions are mutually
exclusive from each other. And the final state loops back to the
reset state with true condition and no operation.

The generated FSMD is:
0: ’(n>=0) |x0=0; y0=0; i0=0;,1’, !(n>=0)|out0=-1;,3’,
1: ’(i0<=n) |y1=y0+i0; x1=5,2, !(i0<=n)|out0=x1+y1;,3’,
2: ’-|i1=i0+1;,1’,
3: ’-|-,0’

Next, module DSS Constructor extracts DSS from the FSMD gen-
erated from C-to-FSMD . The generated DSS is shown below, in
which “Ai “ is the state name of the FSMD.

The generated DSS is:
A0->A1->A2->A1->A3->A0
A0->A1->A3->A0
A0->A3->A0

Next, moduleDSS Analyzer generates tests for all the generated
DSS. We use ATVG to generate the test vectors for all the DSS in
our approach. First, symbolic simulation generates the symbolic
expressions of all the DSS.

Symbolic simulation
• A0 → A1 → A2 → A1 → A3 → A0 : (n0 ≥ 0) ∧ (i0 = 0) ∧
(x0 = 0) ∧ (y0 = 0) ∧ (i0 ≤ n0) ∧ (x1 = 5) ∧ (y1 = y0 + i) ∧
(i1 = i0 + 1) ∧ (i1 ≥ n) ∧ (out0 = x1 + y1)

• A0 → A1 → A3 → A0 : (n0 ≥ 0) ∧ (i0 = 0) ∧ (x0 = 0) ∧
(y0 = 0) ∧ (i1 ≥ n) ∧ (out0 = x1 + y1)

• A0 → A3 → A0 : (n0 ≥ 0) ∧ (out0 = −1)
Next, we fed the symbolic expressions into an SMT solver to

obtain the vectors. In this case, we find that the path A0 → A1 →
A3 → A0 can not be satisfiedwhile the other two paths can. It shows
that the path A0 → A1 → A3 → A0 will not be actually executed,
which means it is a false computation. This unsatisfied path will
be excluded by our method. However, the VP based method in
[14] does not exclude the false computation and fails to check the
equivalence.

Next, our tool will automatically insert states into the trans-
formed program and simulates the program using the obtained test
vectors. After simulation, the corresponding DSS in the transformed
program are generated as shown below.

DSS of transformed program
• B0 → B3 → B0
• B0 → B1 → B2 → B1 → B3 → B0

Finally, module SSA Converter generates the SSA expression for
each DSS. Module Formula Generator generates the SMT for-
mula and invokes an SMT solver to solve the formula. The for-
mula ∧(I0i == I1i) for all the corresponding inputs are conjuncted
to the generated formula. The disjunction (such as (O0i , O1i))
for all the corresponding outputs are conjuncted to the generated
formula. The DSS-pair A0 → A1 → A2 → A1 → A3 → A0
and B0 → B1 → B2 → B1 → B3 → B0 is taken as an exam-
ple. The resulting conjunction is (n00 ≥ 0) ∧ (i00= 0) ∧ (x00= 0) ∧
(y00= 0)∧(i00 ≤ 0)∧(x01= 5)∧(y01=y00+i00)∧(i01=i00+1)∧(i01 ≥

n00)∧(out00=x01+y01)∧(n10 ≥ 0)∧(i10= 0)∧(x10= 0)∧(y10= 0)∧

DssEC: A Deep State Sequence Based Equivalence Checker CSAE 2021, October 19–21, 2021, Sanya, China

Table 1: Experimental Results

Benchmarks #loop #assert #query VP [15] Our Method
Equivalent Time(ms) Equivalent Time(ms)

ASSORT 2 98 6 P 84 P 64
DIFFEQ 1 86 4 P 23 P 20
MODN 1 40 2 P 28 F 24
QRS 0 106 8 P 232 P 185
Test 1 1 45 2 F 4 P 14
Test 2 1 27 2 F 8 P 14
Test 3 2 86 2 F 16 P 26

(i10 ≤ n10) ∧ (x11= 5) ∧ (y11=y10+i10) ∧ (i11=i10+1) ∧ (i10 ≥

n10) ∧ (out10=x11+y11) ∧ (n00=n10) ∧ (out00 , out10).
The SMT formula generated by our tool is as follows.

1. (declare-const n00 Int) (declare-const i00 Int)
2. (declare-const x00 Real) (declare-const y00 Real)
3. (declare-const n01 Int) (declare-const x01 Real)
.
10.(assert (>= n00 0)) (assert (= i00 0))
11.(assert (= x00 0)) (assert (= y00 0))
12.(assert (<= i00 n00)) (assert (= x01 5))
13.(assert (= y01 (+ y00 i00))) (assert (= i01 (+ i00 1)))
14.(assert (>= i01 n00)) (assert (= out00 (+ x_01 y_01)))
15.(assert (>= n10 0)) (assert (= i10 0))
.
20.(assert (= n00 n10))
21.(assert (not (= out00 out10)))
22.(check-sat)

We declared the types of the variables in steps 1-9. Statements 10-19
use ASSERT statements to represent the operations occurring in
the DSS. Statement 20 is the equivalence of the input variables.
Statement 21 checks whether all the output variables attain the
same values or not at the end of the DSS. On feeding this input, the
output generated by the SMT solver is ’unsat’, which shows the
equivalence of the corresponding DSS-pair. All the corresponding
DSS-pairs are proved equivalent. Therefore, the original program
is equivalent to the transformed program.

5 EXPERIMENTAL RESULTS
The experiments compare the performance of our tool with the
earlier equivalence checker [15]. The synthesizer used in our ex-
periments is SPARK [16]. The experiments are conducted on a 3.3
GHz Intel Core i7 CPU and 16G RAM. Table 1 tabulates the execu-
tion time for the benchmarks required by [15] and our tool. The
second column “#loops” in the table shows the number of loops
in the source code. The number of assertions is given in the third
column and the number of queries is given in fourth column. The
verification time by the equivalence checker in [15] and the cur-
rent equivalence checker DssEC are measured in milliseconds (ms).
Rows 1-4 shows both tools are able to prove the equivalence in
these benchmarks.

We manually created the test cases in rows 5-7. For these cases,
the method in [15] fails to prove the equivalence, but our method

can. In these three test cases, there are invariant operation motions
which generate some false computations. The results in Table 1
show the efficiency and effectiveness of our method. For the cases
without false computations our method is more efficient due to the
complete path comparison. For the cases with false computations,
our method can handle the cases where the existing method fails
to establish the equivalence.

6 CONCLUSIONS
In this paper, we present a DSS-based equivalence checker named
DssEC. Our tool is more efficient and effective than the equivalence
checker [15] based on VP. For cases with loop invariant motions,
our tool can prove the equivalence while the tool in [15] fails. For
the cases without false computation, our method can also improve
the verification efficiency due to the complete path comparisons.
However, our tool has a scalability limitation. Due to the large
number of generated DSS, it is time-consuming to exclude and
compare them one by one. It may be useful to use some heuristic in
path generation (such as machine learning [17]) to obtain a relative
small number of DSS.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Founda-
tion of China (61902421).

REFERENCES
[1] D. D. Gajski, N. D. Dutt, A. C, Wu and S. Y. Lin (1999). High-Level Synthesis:

Introduction to Chip and System Design. Kluwer Academic Publishers.
[2] S. Kundu, S. Lerner and R. K. Guptac (2010). Translation Validation of High-Level

Synthesis, In TCAD, 29(4), 566-579.
[3] Tun Li, Yang Guo, Wanwei Liu, Chi yuan Ma (2013). Efficient Translation Valida-

tion of High-Level Synthesis, In ISQED, pp.516-523.
[4] Camposano, R (1991). Path-based scheduling for synthesis. In TCAD. 10(1): 85-93.
[5] Tun Li, Yang Guo, Wanwei Liu, Mingsheng Tang (2013). Translation Validation

of Scheduling in High Level Synthesis, In GLSVLSI, pp.101-106.
[6] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar (2008). An equivalence-checking

method for scheduling verification in high-level synthesis. In TCAD, 27:556-569.
[7] C.-H. Lee, C.-H. Shih, J.-D. Huang, and J.-Y. Jou (2011). Equivalence checking

of scheduling with speculative code transformations in high-level synthesis. In
ASP-DAC, 497-502.

[8] Jian Hu, Guanwu Wang, Guilin Chen, and XiangLin Wei (2019). Equivalence
Checking of Scheduling in High-Level Synthesis Using Deep State Sequences.
IEEE Access 7: 183435-183443.

[9] http://pypi.python.org/pypi/pycparser} (access time: June, 2021).
[10] R. Cytron, J. Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck

(1991). Efficiently computing static single assignment form and the control de-
pendence graph. In TOPLAS, 13(4):451-490.

[11] http://z3.codeplex.com/} (access time: June, 2021).

http://pypi.python.org/pypi/pycparser\protect \T1\textbraceright
http://z3.codeplex.com/\protect \T1\textbraceright

CSAE 2021, October 19–21, 2021, Sanya, China Jian Hu et al.

[12] Chandan Karfa, Chittaranjan A. Mandal, and Dipankar Sarkar (2012). Formal ver-
ification of code motion techniques using data-flow-driven equivalence checking.
Transactions on Design Automation of Electronic Systems (TODAES): 30:1-30:37.

[13] Tun Li, Yang Guo, GongJie Liu, and Sikun Li (2005). Functional vectors generation
for rt-level verilog descriptions based on path enumeration and constraint logic
programming. In 8th Euromicro Conference on Digital System Design (DSD’05),
17-23.

[14] Banerjee, K., Karfa, C., Sarkar, D., Mandal, C.A. (2014). Verification of code motion
techniques using value propagation. In TCAD. 33(8): 1180-1193.

[15] http://cse.iitkgp.ac.in/\%7Echitta/pubs} (access time: June, 2021).
[16] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau (2003). Spark: a high-level synthesis

framework for applying parallelizing compiler transformations, In VLSID, pp.461-
466.

[17] Bishop C (2008). Pattern Recognition and Machine Learning [M]. Berlin: Springer.

http://cse.iitkgp.ac.in/\%7Echitta/pubs\protect \T1\textbraceright

	Abstract
	1 INTRODUCTION
	2 TOOL ARCHITECTURE
	3 FUNCTIONALITIES OF MODULES
	3.1 C-to-FSMD Translator
	3.2 DSS Constructor
	3.3 DSS Analyzer
	3.4 SSA Converter
	3.5 Formula Generator

	4 RUNNING EXAMPLE
	5 EXPERIMENTAL RESULTS
	6 CONCLUSIONS
	Acknowledgments
	References

